
Frustum Volume Caching for Accelerated NeRF Rendering

MICHAEL STEINER, Graz University of Technology, Austria
THOMAS KÖHLER and LUKAS RADL, Graz University of Technology, Austria
MARKUS STEINBERGER, Graz University of Technology, Austria and Huawei Technologies, Austria

Cached View
with Frustum Volume Cache

Cache Sampling &
Re-evaluation of

(Cache Hits)

Resampled View
(Cache Misses)

(d) Reconstruction

Applications

NeRF

latent code
color

density

Motion BlurDepth of Field

Fig. 1. We use a frustum volume cache to store the expensively computed view-independent output of Θbase,
allowing for efficient lookups via backward reprojection and trilinear interpolation, and re-evaluation of
view-dependent effects via the smaller Θhead. We utilize an occupancy grid to detect cache-misses and
seamlessly combine cached samples with newly evaluated ones along view rays. Our approach accelerates
real-time rendering, as well as offline rendering with expensive effects, e.g. motion blur.

Neural Radiance Fields (NeRFs) have revolutionized the field of inverse rendering due to their ability to
synthesize high-quality novel views and applicability in practical contexts. NeRFs leverage volume rendering,
evaluating view-dependent color at each sample with an expensive network, where a high computational
burden is placed on extracting an informative, view-independent latent code. We propose a temporal coherence
method to accelerate NeRF rendering by caching the latent codes of all samples in an initial viewpoint and
reusing them in consecutive frames. By utilizing a sparse frustum volume grid for caching and performing
lookups via backward reprojection, we enable temporal reuse of NeRF samples while maintaining the ability
to re-evaluate view-dependent effects efficiently. To facilitate high-fidelity rendering from our cache with
interactive framerates, we propose a novel cone encoding and explore a training scheme to induce local linearity
into the latent information. Extensive experimental evaluation demonstrates that these choices enable high-
quality real-time rendering from our cache, even when reducing latent code size significantly. Our proposed
method scales exceptionally well for large networks, and our highly optimized real-time implementation
allows for cache initialization at runtime. For offline rendering of high-quality video sequences with expensive
supersampled effects like motion blur or depth of field, our approach provides speed-ups of up to 2×.

CCS Concepts: • Computing methodologies→ Rendering; Machine learning.

Additional Key Words and Phrases: Neural Radiance Fields, Volume Rendering, Temporal Coherence

Authors’ addresses: Michael Steiner, michael.steiner@tugraz.at, Graz University of Technology, Austria; Thomas Köh-
ler, t.koehler@tugraz.at; Lukas Radl, lukas.radl@tugraz.at, Graz University of Technology, Austria; Markus Steinberger,
steinberger@tugraz.at, Graz University of Technology, Austria and Huawei Technologies, Austria.

© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3675370.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HTTPS://ORCID.ORG/0009-0008-7430-6922
HTTPS://ORCID.ORG/0009-0004-2685-0502
HTTPS://ORCID.ORG/0009-0008-4075-5877
HTTPS://ORCID.ORG/0000-0001-5977-8536
https://orcid.org/0009-0008-7430-6922
https://orcid.org/0009-0004-2685-0502
https://orcid.org/0009-0004-2685-0502
https://orcid.org/0009-0008-4075-5877
https://orcid.org/0000-0001-5977-8536
https://doi.org/10.1145/3675370
https://doi.org/10.1145/3675370

2 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

ACM Reference Format:
Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger. 2024. Frustum Volume Caching for
Accelerated NeRF Rendering. Proc. ACM Comput. Graph. Interact. Tech. 7, 3 (July 2024), 22 pages. https:
//doi.org/10.1145/3675370

1 INTRODUCTION
NeRFs [Mildenhall et al. 2020] have recently received considerable attention due to their ability to
faithfully synthesize novel views from a learned 3D scene representation, leveraging differentiable
volume rendering. Although explicit or hybrid representations [Fridovich-Keil et al. 2022; Kerbl et al.
2023] have emerged as competitors citing faster rendering times, NeRF-based methods, particularly
Zip-NeRF [Barron et al. 2023], still achieve the highest view synthesis quality. The volumetric
nature of NeRFs requires spatial sampling along view rays with high sample counts. Although
common volume rendering techniques such as empty space skipping or early ray termination
can alleviate this limitation, many of the best performing methods are not capable of real-time
rendering due to large per-sample computational cost. Even in the context of offline-rendering,
high-quality NeRF-based methods can be prohibitively slow. The most common way to accelerate
NeRF rendering is to bake the underlying representation of a trained model into a more render-
friendly representation, e.g. a mesh [Chen et al. 2023; Reiser et al. 2024; Yariv et al. 2023] or a voxel
grid [Garbin et al. 2021; Hedman et al. 2021]. However, baking these models can be time-consuming,
and often involves a trade-off between quality retention and memory requirements.

Intending to accelerate NeRF-based rendering, we first consider the typical network architecture
employed across virtually all NeRF methods. Generally, the evaluation of each sample is split into
two parts: an expensive base network predicts density and view-independent latent codes, while
a lightweight head network predicts outgoing radiance conditioned on a view direction and the
view-independent intermediate output. However, when rendering consecutive frames of a video
sequence or during real-time rendering, the expensive base network is evaluated repeatedly at very
similar 3D positions, making temporal reuse of view-independent information desirable.
We therefore propose a volumetric caching approach, storing view-independent latent infor-

mation per sample in a view-aligned sparse frustum voxel (froxel) grid, which can be efficiently
sampled via backward reprojection (see Fig. 1). For each sample position, we interpolate the latent
code and density from our cache and re-evaluate view-dependent effects via the head network.
While our approach works out-of-the-box with popular NeRF models like Instant-NGP [Müller
et al. 2022], we find that both quality and performance are subpar. To address both limitations, we
first propose a novel view-directional cone encoding, which allows for significantly smaller latent
codes and an even more lightweight head network, resulting in increased performance. To remedy
interpolation artifacts, we propose to induce spatially local linearity to the latent codes during
training, resulting in higher image quality when rendering from our cache. When combined, both
techniques enable high-fidelity rendering from our cache with interactive framerates.
We provide the source code for our training framework, and a real-time capable renderer that

showcases our method’s capabilities. Our highly optimized CUDA implementation features an
adaptive, asynchronous cache initialization for the real-time viewer, supersampled motion blur and
depth of field for offline rendering, as well as a custom fused kernel to speed up the head network.
Our method effectively accelerates real-time rendering, being up to 4.8× faster than Instant-NGP
while achieving equal quality - compared to non-cached variants, caching increases rendering
speed by up to 2×. Consequently, our renderer performs particularly well for high-quality video
sequences with expensive effects, where we do not observe any loss of rendering quality.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

https://doi.org/10.1145/3675370
https://doi.org/10.1145/3675370

Frustum Volume Caching for Accelerated NeRF Rendering 3

2 BACKGROUND & RELATEDWORK
In the following, we give an overview of the most important NeRF methods, different acceleration
techniques for neural rendering, as well as a general overview of temporal coherence methods.

2.1 Neural Radiance Fields
NeRFs [Mildenhall et al. 2020] tackle the inverse rendering problem, learning a 3D scene from
a set of posed 2D images. Prior techniques mostly tried to solve this problem with image-based
techniques e.g. with multi-layered images [Mildenhall et al. 2019; Srinivasan et al. 2019]. Instead,
NeRF uses an MLP to learn and encode an implicit volumetric representation of a 3D scene as
density and view-dependent outgoing radiance. By applying positional encoding [Tancik et al.
2020], their approach produced state-of-the-art results in novel view synthesis, however, expensive
raymarching using a large MLP limited its applicability. Follow-up work aimed to speed up training
and increase quality by explicitly subdividing the 3D space, employing either multiple smaller
MLPs [Reiser et al. 2021] or learning per-voxel Spherical Harmonics (SH) coefficients [Fridovich-Keil
et al. 2022]. Other works used more efficient explicit representations like octrees [Yu et al. 2021] or
factorized the 5D space into lower-rank tensors [Chen et al. 2022; Tang et al. 2022]. Müller et al.
[2022] introduced an efficient multi-resolution hash encoding, allowing for much smaller MLPs
and, therefore, faster optimization and rendering.

To alleviate the issue of high sample counts, recent work explored depth oracles [Neff et al. 2021],
occupancy grids [Liu et al. 2020; Müller et al. 2022], or automatic per-ray integration [Lindell et al.
2021]. Other methods investigated more efficient sample placement with proposal networks [Bar-
ron et al. 2022, 2023] or sparse sampling networks [Kurz et al. 2022]. To circumvent aliasing,
Mip-NeRF [Barron et al. 2021] proposed an integrated positional encoding, allowing the model to
reason about scale. Mip-NeRF 360 [Barron et al. 2022] extended this idea to unbounded scenes, and
Zip-NeRF [Barron et al. 2023] combined multisampled anti-aliasing with iNGP’s hash grid encod-
ing [Müller et al. 2022]. In contrast to volumetric neural rendering, 3D Gaussian Splatting [Kerbl
et al. 2023] recently demonstrated fast training and rendering with high visual quality, relying on
differentiable rasterization of a mixture of anisotropic 3D Gaussians.

2.2 Baking NeRFs
One common way to accelerate NeRF rendering is to "bake" the neural representation into a
render-friendly format, frequently resulting in a trade-off between quality retention and memory
requirements. FastNeRF [Garbin et al. 2021] factorizes the NeRF network into separate position-
dependent and view-dependent MLPs, whose intermediate outputs are cached in world-space
and can be efficiently queried. Hedman et al. [2021] leverage a sparse voxel grid storing opacity,
diffuse color and a neural feature vector for efficient rendering on commodity hardware. To further
limit storage requirement, MERF [Reiser et al. 2023] reduces the voxel grid resolution and utilizes
2D feature planes. Duckworth et al. [2024] subsequently demonstrated real-time rendering of
apartment-scale scenes with a set of MERFs. Other approaches bake NeRFs into a mesh [Chen et al.
2023; Reiser et al. 2024; Yariv et al. 2023] leveraging the efficient polygon rasterization pipeline:
these approaches struggle with fine geometric structures and semi-transparent objects during
meshing. Finally, other data structures for baking, such as duplex meshes with neural features [Wan
et al. 2023] or view-dependent volumes [Yu et al. 2021], have also been explored. Our approach
circumvents common drawbacks of related work by constructing a view-aligned representation in
real-time from the original NeRF representation.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

4 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

2.3 Temporal Coherence Methods
Reusing rendering information in consecutive frames has always been desirable for computer
graphics applications. Early work used forward reprojection with mesh-based 2.5D reconstruc-
tions [Mark et al. 1997], or layered depth images [Shade et al. 1998]. On the contrary, backward
reprojection for shading reuse is done by re-rendering geometry [Nehab et al. 2007] or through flow
fields and fixed-point iteration [Bowles et al. 2012]. These surface-based methods mostly do not
translate well to volume rendering. Greger et al. [1998] propose to use 3D probes to store irradiance
volumetrically. Other works explored image-based techniques, rendering layers of slabs [Mueller
et al. 1999], or perform point-based rendering [Zellmann et al. 2012]. More recently, neural net-
works were used to cache 3D radiance [Müller et al. 2021] for path-tracing, showing promising
results for both surfaces and participating media. Wronski [2014] and Hillaire [2015] both use a
frustum voxel (froxel) grid to temporally integrate scattered light for volumetric effects, e.g. fog.
Lochmann et al. [2016] propose irregularly sized frustum segments to store a piecewise-analytic
emission-absorption representation. Our temporal coherence method is entirely volumetric and
uses a sparse regular froxel grid and backward reprojection to store and retrieve NeRF latent codes,
enabling re-evaluation of view-dependent effects.

3 PRELIMINARIES
In this section, we first recite details about volumetric rendering with NeRFs, discuss extensions to
handle unbounded scenes, and analyze the underlying architecture of common NeRF methods.

3.1 NeRF Volume Rendering
The goal of NeRF is to learn a function Θ : (x, d) ↦→ (c, 𝜎) that outputs outgoing RGB radiance
c ∈ [0, 1]3 and density 𝜎 ∈ [0, 1] at a 3D point x ∈ R3 in direction d ∈ R3. The color along a ray
r = o + 𝑡d is then accumulated via raymarching, querying Θ at 𝑁𝑆 sample positions {𝑡1, . . . , 𝑡𝑁𝑆

}

𝐶 (r) =
𝑁𝑆∑︁
𝑖=1

𝑇𝑖 (1 − exp(−𝛿𝑖𝜎𝑖))c𝑖 , where 𝑇𝑖 =

𝑖−1∏
𝑗=1

exp(−𝜎 𝑗𝛿 𝑗), (1)

with step size 𝛿𝑖 and transmittance 𝑇𝑖 , translating to alpha blending with 𝛼𝑖 = (1 − exp(−𝛿𝑖𝜎𝑖)).
A straightforward approach for sample placement is via an invertible function 𝑔(·), mapping

an input from stepping-space S to a corresponding 𝑡 value. iNGP [Müller et al. 2022] performs
exponential stepping for unbounded scenes, with 𝑡𝑖+1 = 𝑡𝑖 · (1 + 𝑎) for a small cone angle 𝑎 = 1

256 .
This translates to a step size function 𝑔(𝑖) = 𝑡0 · (1 + 𝑎)𝑖 = 𝑡𝑖 , and 𝑔−1 (𝑡𝑖) = log(𝑡𝑖

𝑡0
− (1 + 𝑎)) = 𝑖 .

To prevent under-/oversampling, 𝛿𝑖 is clamped between [Δ𝑡min,Δ𝑡max], dependent on the size of
the scene’s bounding box (cf. Supplemental A for details). iNGP distills a binary occupancy grid
𝑂 during optimization to enable empty space skipping, representing the expected density within
discretized voxels; for large-scale scenes, a hierarchy of grids is employed.
To ease the learning objective for large, unbounded scenes, multiple works utilize a scene con-

traction [Barron et al. 2022; Neff et al. 2021] to bound the input domain of Θ. Mip-NeRF 360 [Barron
et al. 2022] contracts 3D points x that lie outside the unit norm ball:

contract(x) =
{
x if ∥x∥ ≤ 1(
2 − 1

∥x∥

) (
x
∥x∥

)
if ∥x∥ > 1

. (2)

When using the infinity norm | | · | |∞, this leads to a final contracted space that spans the entire
domain in range [−2, 2]3, thereby fitting the cubic hash grid geometrically [Tancik et al. 2023].

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

Frustum Volume Caching for Accelerated NeRF Rendering 5

deep MLP tiny MLP

(a) NeRF

multi-resolution
hash grid

tiny
MLP tiny MLP

(b) iNGP

Fig. 2. Network architecture comparison between the original NeRF [Mildenhall et al. 2020] and iNGP [Müller
et al. 2022]. NeRF uses frequency encoding 𝛾 for both 3D position x and view-direction v, a deep base MLP,
and a wide latent code l (𝑁𝑙 = 256). In contrast, iNGP uses a multi-resolution hash grid, a tiny base MLP,
very narrow l (𝑁𝑙 = 16) and SH encoding𝜓 for the view-direction.

Mip-NeRF 360 [Barron et al. 2022] introduces a distortion loss Ldist, that encourages weights
𝑤𝑖 = 𝑇𝑖 (1 − exp(−𝛿𝑖𝜎𝑖)) along a ray to form a Dirac distribution in stepping-space. Their loss
also includes a second term, which forces intervals to become smaller, which can be omitted for a
method with fixed step sizes. When using a stepping-space where 𝑔−1 (𝑡𝑖) = 𝑖 , the loss Ldist and its
partial derivative can be rewritten as

Ldist (𝑤) =
𝑁𝑆∑︁
𝑖

𝑁𝑆∑︁
𝑗

𝑤𝑖𝑤 𝑗 |𝑖 − 𝑗 |,
𝜕Ldist
𝜕𝑤𝑖

=

𝑁𝑆∑︁
𝑗

𝑤 𝑗 |𝑖 − 𝑗 |. (3)

3.2 NeRF Network Architecture
As our final approach leverages the underlying NeRF architecture for efficient caching, we ex-
amine current state-of-the-art networks. The most prominent NeRF variants split Θ into a view-
independent base and a view-dependent head network

Θbase : R3 → R(𝑁𝑙+1) , (x) ↦→ (𝜎, l) , (4)

Θhead : R(𝑁𝑙+3) → R3, (l, v) ↦→ (c) , (5)

where 𝜎 is view-independent by design and head is conditioned on the view-independent latent
code l ∈ R𝑁𝑙 . NeRF’s base consists of a frequency encoding 𝛾 and a deep MLP, with 𝑁𝑙 = 256.
Mip-NeRF [Barron et al. 2021] and Mip-NeRF 360 [Barron et al. 2022] introduce a scale-aware
positional encoding, with even wider MLP hidden layers and latent code for Mip-NeRF 360. On the
contrary, iNGP [Müller et al. 2022] use their multi-resolution hash encoding and a tiny MLP as
Θbase, with a narrow l (𝑁𝑙 = 16; the first value of l is also log-space 𝜎), and SH encoding𝜓 of the
view-direction. Finally, Zip-NeRF [Barron et al. 2023] follows iNGP’s network design, but with wider
latent codes (𝑁𝑙 = 256) and a much larger view-dependent MLP for increased quality. We contrast
the architectures of NeRF and iNGP in Fig. 2. All discussed architectures provide opportunity for
accelerated rendering through caching as they use compute intensive Θbase networks, however,
large latent codes ultimately lead to excessive cache size requirements. In this work, we propose
several techniques to produce smaller but more informative latent codes.

4 INTERPOLATING NERF SAMPLES
We propose a temporal coherence method for caching and temporal reuse of view-independent
information to accelerate NeRF rendering. Our key idea is to cache the output of Θbase for each
evaluated sample in a view-aligned volumetric data structure, sample this cache with trilinear

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

6 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

(a) w/o induced linearity (b) Training with interpolation (c) w/ induced linearity

Fig. 3. Depiction of our proposed training scheme to induce spatial linearity into the latent information l
and 𝜎 . (a) Interpolation fails catastrophically at object boundaries if spatial linearity is not learned, which
manifests as bright dots all over the object in the shown example. (b) We induce linearity during training by
interpolating every actual sample at x𝑖 from two artificial samples x(𝑖,0) , x(𝑖,1) , which are shifted along the
view ray by a random per-ray stepping-space offset Δ𝑧 ∈ [0, 1]. (c) This enables our final model to correctly
perform trilinear interpolation from cache.

interpolation from novel viewpoints, and efficiently re-evaluate view-dependent effects via Θhead.
This poses several challenges, addressed here.

4.1 Interpolation
An integral part of our approach is interpolating latent information {𝜎, l} of NeRF samples from a
volumetric data structure. The cache is initialized from a camera at position o𝑡 , with corresponding
view-projection matrix 𝑀𝑡 . We store the information for a view frustum in 3D froxel grids 𝑍 =

{𝑍𝜎 , 𝑍l} with indices in froxel-space Z = (𝑥,𝑦, 𝑧) consisting of (𝑥,𝑦) in image pixel space, and
𝑧 in stepping space S. Any world-space point x ∈ R3 can be transformed into a z ∈ Z via the
transformation 𝐹 :

z = 𝐹 (x) = ©«
(𝑀−1𝑡 x)𝑥
(𝑀−1𝑡 x)𝑦

𝑔−1 (| |x − o𝑡 | |2)
ª®¬ . (6)

Due to the 𝐿2 norm, the frustum appears curved along the 𝑧-dimension when transformed back
into view-space. Notably, 𝑍 is sparsely populated, with a cell (𝑥,𝑦, 𝑧) only being set if the ray at
pixel (𝑥,𝑦) placed a sample at 𝑡 = 𝑔(𝑧) during cache initialization. To detect cache-hits and handle
missing information, we store occupancy information in an additional binary froxel grid 𝑍𝑜 . We
obtain our interpolated values {�̂�, l̂} via trilinear interpolation from 𝑍𝜎 and 𝑍l, where we replace
any value with zero if the corresponding cell in 𝑍𝑜 is unoccupied. This introduces a zero-shift
into the interpolation results, effectively assuming that values must be zero in unoccupied space,
which is a reasonable assumption for density but not for latent codes. Hence, we re-normalize l̂ by
considering adjacent occupancy information, effectively disregarding unoccupied cells:

�̂� = trilerp(z, 𝑍𝜎), l̂ =
trilerp(z, 𝑍l)
trilerp(z, 𝑍𝑜)

. (7)

4.2 Learning Spatial Linearity
Each latent code l is an intermediate output of a neural network, approximating a highly non-linear
function. Naïve linear interpolation of l is not well behaved, even for spatially close 3D samples. We
can induce linearity by performing the interpolation from Eqn. (7) with randomly shifted samples
during training, however, performing full trilinear interpolation from eight samples is expensive.
Notably, for large-scale unbounded scenes and when using exponentially increasing step size,

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

Frustum Volume Caching for Accelerated NeRF Rendering 7

tiny
MLP

Fig. 4. Our proposed cone encoding learns to produce latent codes l, which were generated from a view-
direction v𝑐 , but can be re-evaluated from a similar view-direction v𝑡 , lying in the same cone 𝐶 (v𝑐 , 𝜃max).
By randomly generating a number of view-directions {v(𝑐,1) , . . . , v(𝑐,𝑁𝑐) } ∈ 𝐶 (v𝑡 , 𝜃max) during training,
providing the difference in viewing-angle to Θhead, and averaging the loss of all 𝑁𝑐 samples, the model learns
to treat l as a cone encoding around v𝑐 . To guarantee variety during each training iteration, we randomly
choose a center point v′𝑐 ∈ 𝐶 (v𝑡 ,

𝜃max
2), and uniformly space the 𝑁𝑐 samples on a circle with radius 𝜃max

2 .

adjacent samples in a view frustum exhibit the largest spatial differences along the view rays, i.e.
froxel-space 𝑧-dimension. Therefore, we propose to perform interpolation from just two samples,
shifted along the view ray.
During training, we generate a single random offset in stepping-space Δ𝑧 ∈ [0, 1] per ray r to

interpolate every actual sample x = r(𝑡𝑖) from two artificial samples at x0,1 = r(𝑡𝑖 ± (1 − Δ𝑧)𝛿𝑖), cf.
Fig. 3 for a visualization. We then evaluate𝑂 at these positions, set all interpolation values to zero if
the corresponding position is unoccupied, and perform the same normalization as in Eqn. (7) with

�̂� = lerp(Δ𝑧, 𝑜0𝜎x0 , 𝑜1𝜎x1), l̂ =
lerp(Δ𝑧, 𝑜0lx0 , 𝑜1lx1)

lerp(Δ𝑧, 𝑜0, 𝑜1)
. (8)

where
{
𝜎x𝑗 , lx𝑗

}
= Θbase (x𝑗), and 𝑜 𝑗 = 𝑂 (x𝑗) ∈ {0, 1}. We then continue the evaluation of the

network with �̂� and l̂.
As can be seen in Fig. 3, rendering novel views from our frustum volume cache can produce

disturbing artifacts when interpolating naïvely. Inducing linearity along view rays during opti-
mization eliminates these artifacts. Our experiments suggest that this linearity constraint leads to
slightly degraded image quality metrics. However, considering the increased performance with our
temporal coherence method, inducing spatial linearity proves worthwhile.

4.3 View-dependent Cone Encoding
The performance of our caching approach is highly dependent on the size of l, as this directly
influences cache size and lookup speed. The second crucial factor is the performance of Θhead, as it
is always re-evaluated for cached samples. Notably, l is fully view-independent, meaning the whole
360◦ viewing information is encoded into l, and Θhead is able to produce outgoing radiance for
every possible view-direction. This is wasteful for a temporal coherence approach, where cached
samples will only ever be viewed from viewpoints similar to the cached viewpoint.
We introduce a view-dependent cone encoding, which produces view-dependent latent codes

that encode the viewing information for a cone 𝐶 (v𝑐 , 𝜃max) of angle 𝜃max around view-direction v𝑐 :

𝐶 (v𝑐 , 𝜃max) = {v : v𝑇 v𝑐 < cos(𝜃max)}. (9)

This change allows us to shift computational load fromΘhead to a new cone encoding networkΘneck,
which takes the view-independent output of Θbase and v𝑐 as input, and outputs the cone encoding
l. The outgoing color for the actual view-direction v𝑡 can be recovered from l by providing the
difference of encoded view-directions to Θhead.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

8 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

multi-resolution
hash grid

tiny
MLP tiny MLP

tiny
MLP

view-independent cone view-dependent
fully view-dependentcached

Fig. 5. Our proposed model utilizes a novel cone encoding, to shrink the size of latent codes l, and minimize
the cost for re-evaluating l from a different view-direction v𝑡 . The newly introduced intermediate network
Θneck, receives a SH encoded initial view-direction𝜓 (v𝑐), which is allowed to differ up to 𝜃max degrees from
v𝑡 . The resulting l is now view-dependent, however, our proposed training scheme enables re-evaluation
from v𝑡 by providing the difference in viewing-angle to Θhead. Forwarding the frequency encoded 3D sample
position 𝛾 (xt) to Θhead helps to counteract a possible information loss between Θbase and Θhead.

During optimization, Θhead needs to be provided with examples to learn the relationship between
l, v𝑐 , and v𝑡 . For this purpose, we generate 𝑁𝑐 view-directions {v(𝑐,1) , . . . , v(𝑐,𝑁𝑐) } for every actual
view-direction v𝑡 , such that v(𝑐,𝑗) ∈ 𝐶 (v𝑡 , 𝜃max). For each sample along v𝑡 , each of those shifted
view-directions computes l𝑗 from Θneck, evaluates the sample color via Θhead (l𝑗 , v(𝑐,𝑗) , v𝑡), and
accumulates them along the ray. The total loss is then computed as the average loss of all 𝑁𝑐

view-directions.
Randomly sampling v(𝑐,𝑗) from 𝐶 (v𝑡 , 𝜃max) does not result in a good enough variety of view-

directions during training. Therefore, we propose a slightly more sophisticated sampling scheme,
depicted in Fig. 4. We first uniformly random sample a smaller cone 𝐶 (v𝑡 , 𝜃max

2) to obtain a center
view-direction v′𝑐 . Next, we place the 𝑁𝑐 samples uniformly on a circle of radius 𝜃max

2 around v′𝑐 ,
with a random radial offset 𝜙 ′. By effectively encircling v𝑡 , we ensure a good distribution of view-
directions while guaranteeing that no sample lies outside the encoding cone. Note that v𝑐 = v𝑡
when rendering without a cache, and Θhead does not need to be executed during cache initialization.

4.4 A Model for Efficient Rendering From Cache
To maximize quality and performance, we propose a NeRF model that is particularly well suited
for our caching approach in Fig. 5. The model is based on iNGP (big) [Müller et al. 2022], but with
several adaptions. Most importantly, we leverage our view-dependent cone encoding and spatial
linearity training recipe, detailed previously. These modifications enable a significantly smaller l
and Θhead. To counter the capacity loss when shrinking l further, we provide the encoded sample
position x to Θhead, where we use NeRFs positional encoding [Mildenhall et al. 2020], which can be
re-evaluated efficiently and does not need to be cached.

To reduce the overall sample count and improve quality for unbounded scenes, we incorporate
different techniques from recent NeRF methods. We use the scene contraction and an adapted
version of the distortion loss of Mip-NeRF 360 [Barron et al. 2022], as described in Eqns. (2) and (3).
Our scenes are still bounded by the occupancy grid𝑂 , however, the input domain of Θ is contracted.
Finally, we downweigh gradients close to the camera to reduce floaters, as suggested by Philip and
Deschaintre [2023].
Notably, combining our view-dependent cone encoding with interpolation along the view ray

means that each sample is evaluated twice for each of the 𝑁𝑐 view-directions during optimization.
A naïve approach would execute Θ for each of those combinations, leading to large memory

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

Frustum Volume Caching for Accelerated NeRF Rendering 9

Termination
depth

Near plane
known range

 Brick froxel grid Data grid

Indices inside
point into

Fig. 6. Visualization of the cache datastructures for a 2D toy example with a center object and an opaque
background. During cache initialization, each ray places a number of samples at the same depths 𝑡𝑖 , and
performs early ray termination after reaching full opacity. The near plane and termination depths form a
2.5D frustum volume, representing the known range 𝐾 . Memory is sparsely allocated for fixed-size bricks
inside a froxel grid 𝐵, storing occupancy 𝐵𝑂 , and indices 𝐵𝐼 per brick. The indices 𝐵𝐼 point into voxel grid 𝐷 ,
which contains the actual per-sample cached data. Note that this is only a simplified visualization and our
froxel grids are actually curved along the 𝑧-dimension when transformed to view-space.

requirements and computational overhead. However, the two interpolation samples are joined
when computing l̂, and the 𝑁𝑐 view-directions of the cone encoding can share the same Θbase
outputs. Assuming 𝑁𝑐 = 4, this reduces the number of evaluations of Θ to 2×Θbase, 8×Θneck, and
4×Θhead per sample, ensuring fast optimization for our method.

5 NERF FRUSTUM VOLUME CACHING & REPROJECTION
We propose a caching and reprojection approach to retrieve interpolated NeRF latent information
from a view-aligned sparse froxel grid and efficiently re-evaluate view-dependent effects. Our
proposed datastructures and methodologies are designed to fulfill the following objectives: we aim
to maximize cache lookup speed, minimize the cache size, and perform fast cache initialization
during runtime. Our design decisions were guided by quality and performance evaluations on our
highly optimized CUDA/C++ implementation.

5.1 Caching Datastructure
Due to its design, our NeRF model produces a low number of samples per ray, which are sparsely
allocated inside the view frustum. We utilize a sparse froxel grid with fixed-size cubic bricks of side
length 𝑁𝐵 , enabling efficient parallel initialization and providing a favorable compromise between
sparsity and lookup speed. We employ a brick froxel grid 𝐵 that stores per-brick binary occupancy
information 𝐵𝑂 and indices 𝐵𝐼 , pointing into the data voxel grid 𝐷 where the brick’s actual data
resides. 𝐷 stores per-sample latent information in three separate voxel grids: density 𝐷𝜎 , latent
code 𝐷l, and binary sample occupancy 𝐷𝑂 . As neighboring bricks in 𝐵 are not necessarily adjacent
in 𝐷 , prohibiting the use of efficient hardware interpolation, we opt to pad bricks inside 𝐷 to store
additional information of neighboring bricks.
We maintain an additional datastructure to accelerate occupancy checks by spanning a 2.5D

frustum volume, representing the known range 𝐾 of our cache. Essentially, each sample outside 𝐾
is guaranteed to be unoccupied in 𝐵. We can easily construct this volume during cache initialization
by using the current camera position, its corresponding near plane and each rays termination depth.
For a visualization of our datastructures, cf. Fig. 6.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

10 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

5.2 Cache Initialization
During cache initialization, all rays place their 𝑖-th sample at the same distance 𝑡𝑖 , allowing us to
use a regular froxel grid - note that all values are explicitly initialized as zero. A naïve initialization
strategy would let all rays perform sample placement and early ray termination independently,
only synchronizing for the allocation of bricks. Regrettably, this can leave bricks underutilized if
most rays already terminated, but a few distant rays remain and keep placing samples.

We mitigate this limitation with brick-wise initialization, operating with brick-sized ray bundles
of dimension 𝑁𝐵×𝑁𝐵 instead of individual rays. Ray bundles always perform stepping collectively,
only terminate as a whole, and never terminate before reaching the end of the currently sampled
brick in 𝐵. Additionally, bricks are only allocated if any ray of the bundle places a valid sample,
leading to much higher utilization of bricks and better memory coherence. This strategy maximizes
brick occupancy and lookup performance, but leads to slower cache initialization as collective ray
bundle termination inevitably leads to more evaluated samples. Note that we differentiate between
inner and outer rays when using padded bricks. Only inner rays are considered for ray bundle
termination and can initiate brick initialization, whereas outer rays merely place samples when
bricks are initialized.

5.3 Reprojection & Sampling
With our caching approach established, we show our algorithm for sampling in Alg. (1). We
transform samples x into froxel-spaceZ via Eqn. (6). A sample z ∈ Z is inside the known range 𝐾 ,
if z𝑧 lies between the cache’s near plane and the termination depth at 𝑇 [z𝑥 , z𝑦]. If 𝐵𝑂 is occupied,
we determine the position d inside 𝐷 by expanding the brick index from 𝐵𝐼 and adding z’s offset
inside the current brick. Finally, we count this sample as a cache-hit if 𝐷𝑂 is occupied at d and
opacity exceeds a threshold 𝜏𝛼 , to perform our normalized trilinear interpolation as proposed in
Eqn. (7). If a sample is outside 𝐾 but occupied in 𝑂 , we treat it as a cache-miss and evaluate Θ.

5.4 Implementation Details
Our implementation consists of a pytorch training framework, based on NerfAcc [Li et al. 2023],
and an optimized CUDA/C++ real-time viewer and offline renderer. Both applications leverage
tiny-cuda-nn [Müller 2021] for efficient MLP and input encoding inference. We provide our source
code in the supplementary material.

Datastructures. To allow for better memory access patterns and hardware interpolation, we store
the data of 𝐵 and 𝐷 in 3D textures. All values are stored in full-precision, except for l, which is
natively output by tiny-cuda-nn in half -precision. To further speed up cache retrieval, we group
the entries of 𝐷l into batches of four (half4), a format supported by CUDA and GPU hardware.

Sampling. Following iNGP [Müller et al. 2022], we perform sampling rounds with a fixed number
of samples per ray, terminating and compacting the remaining rays after each round. In addition,
we reject samples with opacity below 𝜏𝛼 = 10−5 and perform early ray termination at transmittance
𝑇 < 10−4. We split our implementation of Alg. (1) across multiple kernels: the sampling kernel only
performs the cache-hit detection and writes the 𝑡-values of each ray’s cached and new samples
to separate 𝑡-buffers. Individual rays might exclusively place cached or new samples during a
round, leading to sparse sample buffers and unnecessary evaluations of Θ and Θhead. Therefore, we
compact the 𝑡-buffers after sampling, and perform the interpolation of l̂ and generation of network
inputs in a separate per-sample kernel. Finally, to accelerate empty space skipping during ray
initialization, we mesh and ray-trace the occupancy grid following Wald et al. [2021] to place the
first sample.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

Frustum Volume Caching for Accelerated NeRF Rendering 11

ALGORITHM 1: Sampling, cache-hit detection & interpolation
NeRF model: Network Θ = {Θbase,Θneck,Θhead}; Occupancy grid 𝑂
Cache data: Brick froxel grid 𝐵 = {𝐵𝑂 , 𝐵𝐼 }; Data voxel grid 𝐷 = {𝐷𝑂 , 𝐷𝜎 , 𝐷l}; Known range 𝐾

Data: Sampled 3D world position x, view-direction v𝑡 , cache view-direction v𝑐 , and step size 𝛿
Result: Sample color and density (c, 𝜎):

Interpolated from cache (cache-hit), resampled (cache-miss), or NULL if rejected
1 if 𝑂 [x] occupied then
2 z← 𝐹 (x) ; // Transform x into froxel-space Z, following Eqn. (6)
3 if x ∈ 𝐾 then
4 if 𝐵𝑂 [z] occupied then
5 d← expand(𝐵𝐼 [z], z) ; // Retrieve position inside 𝐷 via z and 𝐵𝐼

6 �̂� ← trilerp(d, 𝐷𝜎) ;
7 if 𝐷𝑂 [d] occupied and (1 − exp(𝛿�̂�)) > 𝜏𝛼 then
8 l̂← trilerp(d,𝐷l)

trilerp(d,𝐷𝑜) ; // Cache-Hit ⇒ Interpolate {�̂�, l̂} from 𝐷 ...

9 return (c← Θhead (l̂, x, v𝑡 , v𝑐), �̂�) ; // ... and re-evaluate only Θhead

10 end
11 end
12 return NULL ; // Rejected by 𝐵𝑂, 𝐷𝑂 or 𝜏𝛼

13 else
14 return (c, 𝜎) ← Θ(x, v𝑡) ; // Cache-Miss ⇒ evaluate Θ entirely

15 end
16 end
17 return NULL ; // Rejected by 𝑂

Fused Head Network. Our potential speedup is clearly dependent on the runtime of Θhead, which
is evaluated for each cached sample. Our model employs two additional input encodings𝜓 (x) and
𝛾 (v𝑐), which need to be communicated via slow global memory, if implemented naïvely. We thus
opt for a custom fused kernel that performs the full evaluation of Θhead, thereby only requiring
communication of (x, v𝑡 , v𝑐) instead of their much larger encodings. Each thread is responsible for
loading and encoding one input sample, performing cooperative tensor-core matrix multiplications
for the input layer, and matrix-vector multiplication in registers for the output layer.

Real-time Viewer & Offline Renderer. Our real-time viewer is designed for high interactivity,
providing automatic cache updates based on the cache-hit ratio (CHR). We hide latency with
double-buffered caches and run initialization asynchronously in a lower priority stream, enhancing
user experience. Our offline renderer can be used to render high-quality images and video sequences
with supersampled motion blur and depth of field, adapted from iNGP [Müller et al. 2021].

6 RESULTS
We evaluate our proposed model and caching approach on challenging, real-world scenes from
the Mip-NeRF 360 dataset [Barron et al. 2022]. First, we demonstrate the effectiveness of our
proposed model components and training schemes by comparing against other popular NeRF
models. Additionally, we evaluate the performance and quality of our caching approach, when
applied to our trained models. We provide additional implementation details in Supplemental B.

Models. We refer to our proposed model from Sec. 4.4 as Ours, using 𝑁𝑐 = 4 samples and
degree 𝜃max = 25◦ for optimizing the cone encoding, and 4 degrees for the frequency encoding
𝛾4 (x) : R3 → R24. To evaluate the effectiveness of our proposed model, we compare against a

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

12 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

Table 1. Standard image quality metrics and average number of samples 𝑁𝑆 per ray for different models on
the Mip-NeRF 360 dataset [Barron et al. 2022]. Results with (‡) are reproduced from Kerbl et al. [2023].

Dataset Mip-NeRF 360 Indoor Mip-NeRF 360 Outdoor

Method PSNR↑ SSIM↑ LPIPS↓ FLIP↓ mean(𝑁𝑆)↓ PSNR↑ SSIM↑ LPIPS↓ FLIP↓ mean(𝑁𝑆)↓

Plenoxels‡ 24.84 0.765 0.366 0.182 - 21.69 0.513 0.467 0.229 -
Mip-NeRF 360‡ 31.57 0.914 0.182 0.088 - 24.42 0.691 0.286 0.170 -
3DGS‡ 30.41 0.920 0.190 0.099 - 24.64 0.732 0.233 0.167 -

iNGP (big)† 29.44 0.866 0.257 0.108 35.02 23.07 0.547 0.425 0.197 57.20
iNGP Ours 30.32 0.889 0.219 0.101 12.94 24.18 0.653 0.317 0.174 21.73
Ours 30.14 0.891 0.220 0.104 12.92 24.23 0.659 0.312 0.173 20.18
Ours 5◦ 30.38 0.891 0.218 0.101 12.80 24.25 0.659 0.311 0.173 20.69
Ours (huge) 30.58 0.901 0.203 0.101 12.53 24.52 0.682 0.289 0.168 21.15

standard variant of iNGP (big) with scene contraction, distortion loss, gradient scaling and our
interpolation training, which we dub iNGP Ours. Both models use MLP layers of width 128, and a
hash-grid encoding with 8 levels, 4 features, and 221 hash entries, growing from 163 to 40963 in
resolution. Ours, in contrast to iNGP, uses MLP layer counts for (Θbase/Θneck/Θhead) of (1/2/1),
and smaller latent codes with 𝑁𝑙 = 8. To showcase the scalability of our caching approach, we add
a version of our model with a larger hash grid (10 levels, 222 entries, and max. resolution of 81923),
called Ours (huge).

6.1 Model Evaluation
For the quantitative evaluation of our trained models, we report PSNR, SSIM [Wang et al. 2004],
LPIPS [Zhang et al. 2018] and FLIP [Andersson et al. 2020] in Tab. 1. We also include numbers
for our re-implementation of iNGP (big)† [Müller et al. 2022], where we use the same hash grid
configuration as for Ours. To facilitate cross-method comparisons, we also include metrics for
3DGS [Kerbl et al. 2023], Mip-NeRF 360 [Barron et al. 2022] and Plenoxels [Fridovich-Keil et al.
2022], which are reproduced from Kerbl et al. [2023] and marked with ‡.

Our evaluations show that Ours is able to maintain competitive quality and reduce sample counts,
even though it uses smaller latent codes and a smaller Θhead. Reducing 𝜃max of the cone encoding
to 5◦ improves quality slightly, but struggles when re-evaluating the latent codes for larger view-
changes (see Supplemental D for details). Ours (huge) performs best out of our methods and rivals
even Mip-NeRF 360 and 3DGS, but leads to slower render times and considerably larger model
size compared to the (big) variant. Contrasting iNGP Ours with the base iNGP model showcases
the effect of the distortion loss and scene contraction, reducing the sample count drastically and
improving image quality.

On average, training time increases slightly from 20 to 24 minutes when enabling interpolation
training in iNGP Ours, and to 47 minutes with our cone encoding (Ours). Although each sample
is evaluated 8×, training times only increase by 2.5×, which is achieved by sharing common
computations (cf. Sec. 4.4). For comparison, 3DGS trains for 30−40 minutes on our system, and
Mip-NeRF 360 for 12 hours on 4 A100 GPUs1.

6.2 Caching & Reprojection
To evaluate our cache-based rendering for different view changes, we utilize the test set views
(at position o with view-direction v) from Mip-NeRF 360 [Barron et al. 2022] and initialize our
1As reported by Kerbl et al. [2023]

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

Frustum Volume Caching for Accelerated NeRF Rendering 13

Table 2. Qualitative evaluation based on PSNR image metrics when rendering from our cache for different
rotational/translational viewpoint changes. Models trained without induced linearity deliver significantly
degraded image quality during cache rendering. Ours can faithfully render from cache even for small latent
code sizes, if trained for a large enough cone angle.

Dataset Mip-NeRF 360 Indoor Mip-NeRF 360 Outdoor

Rotation Translation Rotation Translation

Method No Cache 5◦ 10◦ 15◦ + − No Cache 5◦ 10◦ 15◦ + −

Ours 30.12 30.25 30.18 30.05 30.29 30.14 24.22 24.31 24.28 24.23 24.35 24.23
Ours w/o linearity 30.27 24.52 24.65 24.73 25.73 23.53 24.28 20.58 20.67 20.75 21.41 19.94
Ours 5◦ 30.35 30.29 29.60 28.34 30.49 30.33 24.28 24.31 24.04 23.40 24.39 24.27
Ours 45◦ 30.02 30.15 30.09 29.99 30.19 30.04 24.17 24.26 24.24 24.20 24.30 24.19
Ours 𝑁𝑙 = 4 30.03 30.16 30.08 29.95 30.20 30.07 24.18 24.27 24.23 24.17 24.31 24.20

iNGP Ours 30.30 30.43 30.37 30.28 30.47 30.31 24.17 24.25 24.23 24.19 24.28 24.17
iNGP Ours w/o linearity 30.56 29.84 29.83 29.81 30.10 29.67 24.28 23.93 23.93 23.93 24.06 23.83
iNGP Ours 𝑁𝑙 = 8 30.15 29.70 29.68 29.64 29.89 29.54 24.02 23.80 23.79 23.78 23.90 23.71

cache from different locations in the vicinity of o. To quantify the effect of small/large translation,
we move the cache initialization camera’s position otrans along v, i.e. otrans = o + 𝑡 · v, with
𝑡 ∈ {± Δ𝑡min

2 ,± 0.1,± 0.25}. Similarly, we create rotated initialization views orot by rotating o
around a reference point along v, with rotation angles 𝜃 and 𝜙 (see Supplemental E for details).
Following [Lochmann et al. 2016], we shift the viewing-angle by 𝜃 ∈ {5◦, 10◦, 15◦}, and sample
each 𝜃 at six different angles 𝜙 ∈ {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}. We utilize this setup for both
performance and qualitative evaluation, reporting average results for 𝜃 and positive/negative 𝑡 . All
evaluations use padded bricks of size 𝑁𝐵 = 6 for our cache datastructure.

Image Metrics. We provide a comparison based on PSNR for positive/negative translation and
different rotation angles 𝜃 in Tab. 2. Both Ours and iNGP Ours are able to faithfully render the test
set views from cache, even for larger rotational movements. When linearity is not induced during
training, quality degrades significantly. Contrary to iNGP Ours, Ours is able to faithfully render
from cache, even when latent code size is further reduced. Our cone encoding delivers higher
initial quality when trained for smaller cone angles, however, quality degrades heavily for larger
rotational view changes. Example images for a single test view can be seen in Fig. 7.

Performance & Cache Size. We evaluate the average performance over all scenes of the Mip-
NeRF 360 dataset [Barron et al. 2022] for different configurations of Ours and iNGP Ours in Tab. 3.
The timings are measured on an NVIDIA RTX 4090, and averaged over 10 runs in FullHD resolution.
iNGP Ours has the fastest baseline performance but only experiences slight speed-ups when
rendering from the cache, as evaluation of Θhead is expensive for this model. Reducing 𝑁𝑙 for
iNGP Ours from 16 to 8 leads to a decreased memory footprint, but increases performance only
slightly. Ours experiences large speedups when employing caching, especially for smaller rotational
movements where the CHR is high. Scaling up Θbase in Ours (huge) leads to slower overall render
times, however, we can take full advantage of caching if CHR is high enough. Finally, changing 𝑁𝑙

for Ours has a considerable impact on cache size and speedup.
Cache initialization times and cache size are also highly dependent on brick size 𝑁𝐵 and padding

choice, with initialization for Ours and 𝑁𝐵 = 6 (w/ padding) taking 161ms and using 3.41 GiB of
memory on average, while 𝑁𝐵 = 8 (w/o padding) requires 75ms and 1.64 GiB (cf. Supplemental G).
Our double-buffered initialization allows us to hide this latency over multiple frames.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

14 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

Rotation: Rotation: Rotation: Translation:Translation:

C
ac

he
 In

it
Vi

ew
C

ac
he

-H
it

M
as

k
C

ac
he

 R
en

de
r

FL
IP

C
ac

he
 v

s.
 B

as
e

Ba
se

 R
en

de
r

G
ro

un
d-

Tr
ut

h
(G

T)

29.91 29.81 29.65 30.0029.8529.88

Fig. 7. Qualitative comparison of our cache-based rendering approach for an example view of the Kitchen
scene, rendered with Ours. The cache is rendered from the test set viewpoint, but initialized from a slightly
rotated/translated viewpoint in its vicinity. We visualize the contribution of cache-hit vs. cache-miss samples
and provide a FLIP comparison to the baseline render (= without caching). As can be seen in the inset PSNR
scores (compared to the ground truth image), we maintain the baseline quality and even exceed it in some
configurations. Note that the stripes in the FLIP images appear due to deterministic sample placement during
rendering, and smooth out when rendering multiple "jittered" rays per pixel.

Table 3. Performance and cache size (w/o double-buffering) ablation of our proposed methods. We report
speedup of eachmethod compared to its baseline performance ("NoCache"). Times inms for FullHD resolution.

Type No Cache 𝑡 = − Δ𝑡min
2 𝜃 = 5◦ 𝜃 = 10◦ 𝜃 = 15◦ Avg. Cache

Method CHR ∼97% CHR ∼83% CHR ∼72% CHR ∼63% Size (GiB)

Ours 48.82 25.68 (1.90×) 28.38 (1.72×) 30.64 (1.59×) 32.63 (1.50×) 3.41
Ours 𝑁𝑙 = 16 51.09 32.05 (1.59×) 34.16 (1.50×) 35.79 (1.43×) 37.55 (1.36×) 5.73
Ours 𝑁𝑙 = 4 51.36 24.62 (2.09×) 27.99 (1.83×) 30.47 (1.69×) 32.71 (1.57×) 2.34
Ours (huge) 60.33 26.38 (2.29×) 31.61 (1.91×) 35.53 (1.70×) 38.84 (1.55×) 3.39
Ours w/o fused Θhead 64.70 43.62 (1.48×) 44.94 (1.44×) 46.42 (1.39×) 48.08 (1.35×) 3.41

iNGP (big)† 124.30 - - - - -
iNGP Ours 46.79 43.32 (1.08×) 42.69 (1.10×) 42.35 (1.10×) 42.46 (1.10×) 5.69
iNGP Ours 𝑁𝑙 = 8 49.44 42.46 (1.16×) 42.50 (1.16×) 42.56 (1.16×) 43.01 (1.15×) 3.58

The speedups are heavily dependent on the efficiency of Θhead, as can be seen when we disable
our custom fused Θhead implementation. We include render times for iNGP (big)† to put the other
results into perspective, indicating that Ours can achieve speedups of 3.8× to 4.8× compared to
iNGP (big). We show detailed per-stage timings of the cache rendering pipeline in Supplemental F.

Video Sequence. To showcase scalability of our approach for high-quality offline rendering, we
measure performance for a 300 frame video sequence of the Stump and Bonsai scene. We initialize
the cache with double the sampling rate along the view ray to prevent any possible undersampling,
reaching a maximum cache size of 5.15 GiB for the Stump scene, and 3.95 GiB for Bonsai, with only
∼2.5% of bricks occupied in the sparse brick froxel grid. The cache is re-initialized automatically

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

Frustum Volume Caching for Accelerated NeRF Rendering 15

after the CHR drops below 85%, which occurs around 50 times in both scenes and takes around
200ms per initialization. Considering overall render times, including the time spent for cache
initialization, we achieve an average speed-up of ∼1.84× through our caching approach, without
any noticeable loss in quality (see supplementary videos and Supplemental H for details).

7 LIMITATIONS & FUTUREWORK
Even though our work shows promising results, there are limitations to its application. The most
obvious limitation is cache size, which can become prohibitively large for lower-end graphics
cards, especially on higher resolutions. Secondly, even though cache initialization can be performed
efficiently at runtime, it can still lead to a worse user experience during real-time rendering, if
performed naïvely. Our double-buffered initialization hides latency to a high extent, however, more
sophisticated asynchronous approaches or prediction mechanisms would be required to completely
mitigate this drawback. This is not an issue for offline-rendering, where initialization times are
amortized by faster rendering and longer cache reuse. Furthermore, our approach currently relies on
a deterministic step size function to perform cache lookups, which prohibits the usage of proposal
sampling techniques. Finally, choosing the stepping intervals too large during cache initialization
can lead to undersampling, which could be solved by using anti-aliased sampling techniques, as
proposed by Zip-NeRF [Barron et al. 2023]. Applying our method to more expensive models could
also lead to more significant speedups, but would only be feasible for offline-rendering. Another
promising application is virtual reality, where a single cache can be used for both viewpoints and
reused across multiple frames.
While our method is currently outperformed by 3DGS [Kerbl et al. 2023] and mesh-based

methods [Chen et al. 2023] in terms of performance, volumetric NeRF approaches do not exhibit
some of their drawbacks. 3DGS suffers from popping artifacts (discussed in detail in Radl et al.
[2024]), slight inaccuracies due to their projection approximation, and comparatively large models.
Mesh-based methods struggle to faithfully represent thin structures and semi-transparent surfaces,
and often require an additional baking step.

Reducing cache size through compression, e.g. by consolidating similar latent codes hierarchically,
is a first logical next step. Additionally, updating the caching datastructure continuously with
the information of cache-miss samples could help improve performance and postpone the next
cache initialization. Finally, although we only tested our method on static NeRF scenes, it would be
intriguing to apply it to dynamic NeRFs by using a bi-directional deformation field.

8 CONCLUSION
In this paper, we examined common NeRF network architectures in detail and proposed a caching
and reprojection approach to exploit their underlying structure. Our method allows for temporal
reuse of NeRF samples via a view-aligned, fully volumetric cache representation, while enabling
re-evaluation of view-dependent effects. We are able to accelerate rendering by caching expensively
computed view-independent latent codes, and proposed efficient cache sampling algorithms and
training schemes, to further improve quality and performance. Additionally, we introduced a novel
view-dependent cone encoding that allows for much smaller latent codes, thereby decreasing mem-
ory requirements and further improving performance when rendering from the cache. Our approach
scales exceptionally well with larger models and can speed up offline rendering with expensive
effects by up to 2×, without requiring any baking of the underlying NeRF model. Furthermore,
our insights into interpolation and caching of volumetric sample latent codes have the potential
to inspire further developments in classical volume rendering. We think that temporal coherence
methods will be essential going forward, especially for expensive, high-quality NeRF models. The
source code of our training framework and renderer are publicly available (after review).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

16 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

REFERENCES
Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle Åström, and Mark D. Fairchild. 2020. FLIP:

A Difference Evaluator for Alternating Images. Proceedings of the ACM on Computer Graphics and Interactive Techniques
3, 2, Article 15 (2020), 23 pages.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
2021. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2022. Mip-NeRF 360: Unbounded
Anti-Aliased Neural Radiance Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2023. Zip-NeRF: Anti-Aliased
Grid-Based Neural Radiance Fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

Huw Bowles, KennyMitchell, Robert W. Sumner, JeremyMoore, and Markus Gross. 2012. Iterative ImageWarping. Computer
Graphics Forum 31, 2 (2012), 237–246.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF: Tensorial Radiance Fields. In Proceedings
of the European Conference on Computer Vision.

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. 2023. MobileNeRF: Exploiting the Polygon
Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.

Daniel Duckworth, Peter Hedman, Christian Reiser, Peter Zhizhin, Jean-François Thibert, Mario Lučić, Richard Szeliski, and
Jonathan T. Barron. 2024. SMERF: Streamable Memory Efficient Radiance Fields for Real-Time Large-Scene Exploration.
ACM Transactions on Graphics 43, 4, Article 63 (2024).

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa. 2022. Plenoxels:
Radiance Fields without Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. 2021. FastNeRF: High-Fidelity
Neural Rendering at 200FPS. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Greenberg. 1998. The Irradiance Volume. IEEE Computer
Graphics and Applications 18, 2 (1998), 32–43.

Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul Debevec. 2021. Baking Neural Radiance
Fields for Real-Time View Synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

Sebastien Hillaire. 2015. Towards Unified and Physically-Based Volumetric Lighting in Frostbite. (2015). In SIGGRAPH
Advances in Real-Time Rendering in Games course.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023. 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM Transactions on Graphics 42, 4, Article 139 (2023).

Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In International Conference on Learning
Representations.

Andreas Kurz, Thomas Neff, Zhaoyang Lv, Michael Zollhöfer, and Markus Steinberger. 2022. AdaNeRF: Adaptive Sampling
for Real-time Rendering of Neural Radiance Fields. In Proceedings of the European Conference on Computer Vision.

Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo Kanazawa. 2023. NerfAcc: Efficient Sampling Accelerates NeRFs. In
Proceedings of the IEEE/CVF International Conference on Computer Vision.

David B Lindell, Julien NP Martel, and Gordon Wetzstein. 2021. AutoInt: Automatic Integration for Fast Neural Volume
Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020. Neural Sparse Voxel Fields.
Gerrit Lochmann, Bernhard Reinert, Arend Buchacher, and Tobias Ritschel. 2016. Real-time Novel-view Synthesis for

Volume Rendering Using a Piecewise-analytic Representation. In Proceedings of the Conference on Vision, Modeling and
Visualization.

William R. Mark, Leonard McMillan, and Gary Bishop. 1997. Post-Rendering 3D warping. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games.

Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. 2019. Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines. ACM
Transactions on Graphics 38, 4 (2019), 1–14.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF:
Representing Scenes as Neural Radiance Fields for View Synthesis. In Proceedings of the European Conference on Computer
Vision.

Klaus Mueller, Naeem Shareef, Jian Huang, and Roger Crawfis. 1999. IBR-Assisted Volume Renderin. In Proceedings of IEEE
Visualization Conference.

Thomas Müller. 2021. tiny-cuda-nn. https://github.com/NVlabs/tiny-cuda-nn

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

https://github.com/NVlabs/tiny-cuda-nn

Frustum Volume Caching for Accelerated NeRF Rendering 17

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neural Graphics Primitives with a
Multiresolution Hash Encoding. ACM Transactions on Graphics 41, 4, Article 102 (2022), 15 pages.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time Neural Radiance Caching for Path
Tracing. ACM Transactions on Graphics 40, 4, Article 36 (2021), 16 pages.

Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, Anton
Kaplanyan, and Markus Steinberger. 2021. DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields
using Depth Oracle Networks. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 45–59.

Diego Nehab, Pedro V. Sander, Jason Lawrence, Natalya Tatarchuk, and John R. Isidoro. 2007. Accelerating Real-Time Shading
with Reverse Reprojection Caching. In Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware.

Julien Philip and Valentin Deschaintre. 2023. Floaters No More: Radiance Field Gradient Scaling for Improved Near-Camera
Training. In Eurographics Symposium on Rendering.

Lukas Radl, Michael Steiner, Mathias Parger, Alexander Weinrauch, Bernhard Kerbl, and Markus Steinberger. 2024. StopThe-
Pop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering. ACM Transactions on Graphics 43, 4, Article 64
(2024).

Christian Reiser, Stephan Garbin, Pratul P. Srinivasan, Dor Verbin, Richard Szeliski, Ben Mildenhall, Jonathan T. Barron,
Peter Hedman, and Andreas Geiger. 2024. Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View
Synthesis. ACM Transactions on Graphics 43, 4, Article 149 (2024).

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. KiloNeRF: Speeding up Neural Radiance Fields with
Thousands of Tiny MLPs. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

Christian Reiser, Rick Szeliski, Dor Verbin, Pratul P. Srinivasan, Ben Mildenhall, Andreas Geiger, Jon Barron, and Peter
Hedman. 2023. MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes. ACM
Transactions on Graphics 42, 4, Article 89 (2023), 12 pages.

Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered Depth Images. In Proceedings of the ACM on
Computer Graphics and Interactive Techniques.

Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng, and Noah Snavely. 2019. Pushing the
Boundaries of View Extrapolation with Multiplane Images. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. 2020. Fourier Features Let Networks Learn High Frequency Functions in
Low Dimensional Domains. In Advances in Neural Information Processing Systems.

Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Terrance Wang, Alexander Kristoffersen, Jake Austin,
Kamyar Salahi, Abhik Ahuja, et al. 2023. Nerfstudio: A Modular Framework for Neural Radiance Field Development. In
SIGGRAPH.

Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, and Gang Zeng. 2022. Compressible-composable NeRF via Rank-residual
Decomposition. In Advances in Neural Information Processing Systems.

Ingo Wald, Stefan Zellmann, and Nate Morrical. 2021. Faster RTX-Accelerated Empty Space Skipping using Triangulated
Active Region Boundary Geometry. In Eurographics Symposium on Parallel Graphics and Visualization.

Ziyu Wan, Christian Richardt, Aljaž Božič, Chao Li, Vijay Rengarajan, Seonghyeon Nam, Xiaoyu Xiang, Tuotuo Li, Bo
Zhu, Rakesh Ranjan, and Jing Liao. 2023. Learning Neural Duplex Radiance Fields for Real-Time View Synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility
to Structural Similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600–612.

Bart Wronski. 2014. Volumetric Fog: Unified Compute Shader-Based Solution to Atmospheric Scattering. (2014). In
SIGGRAPH Advances in Real-Time Rendering in Games course.

Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron, and Ben
Mildenhall. 2023. BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis. In SIGGRAPH.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021. PlenOctrees for Real-time Rendering of
Neural Radiance Fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

Stefan Zellmann, Martin Aumüller, and Ulrich Lang. 2012. Image-Based Remote Real-Time Volume Rendering: Decoupling
Rendering From View Point Updates. In Proceedings of the International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018. The Unreasonable Effectiveness of Deep
Features as a Perceptual Metric. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

18 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

A CLAMPED EXPONENTIAL STEP SIZE
Instant-NGP [Müller et al. 2022] performs clamped exponential stepping for unbounded scenes,
with 𝑡𝑖+1 = min(max(𝑡𝑖 · (1 + 𝑎),Δ𝑡min),Δ𝑡max) for a small cone angle 𝑎 ∈ R+ and a min/max step
size Δ𝑡min,Δ𝑡max. We can derive an invertible stepping function 𝑔(·) as

𝑔(𝑖) =

𝑡0 + 𝑖 · Δ𝑡min if 𝑖 < 𝑖min

𝑡𝑖min · (1 + 𝑎)1−𝑖min if 𝑖min ≤ 𝑖 < 𝑖max

𝑡𝑖max + (𝑖 − 𝑖max) · Δ𝑡max if 𝑖 ≥ 𝑖max

, (10)

𝑔−1 (𝑡) =

𝑡−𝑡0
Δ𝑡min

if 𝑡 < 𝑡𝑖min

𝑖min + log
(

𝑡
𝑡𝑖min
− (1 + 𝑎)

)
if 𝑡𝑖min ≤ 𝑡 < 𝑡𝑖max

𝑖max + 𝑡−𝑡𝑖max
Δ𝑡max

if 𝑡 ≥ 𝑡𝑖max

, (11)

with boundaries in stepping space 𝑖min = 1
𝑎
− 𝑡0

Δ𝑡min
, and 𝑖max = log

(
Δ𝑡𝑖max
𝑎 ·𝑡𝑖min

− (1 + 𝑐)
)
+ 𝑖min.

B ADDITIONAL IMPLEMENTATION DETAILS
Dataset & Scaling. We use the 2× downsampled images for indoor scenes and 4× for outdoor

scenes, following related work. The multi-resolution occupancy grid 𝑂 grows exponentially with
factor 2 from [−1, 1] to [−32, 32] for outdoor scenes (6 levels), and [−16, 16] for indoor scenes (5
levels). Scene contraction is applied such that [−2, 2] becomes the unwarped area.

Training. We optimize our model using Adam [Kingma and Ba 2015], with parameters 𝜖 =

10−15, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝐿2 weight decay with 𝜆 = 10−6. All our models are trained for
60k iterations, with learning rate 𝜂 increasing linearly from 10−4 to 10−2 for the first 6k warmup
iterations, followed by a cosine annealing schedule towards 𝜂 = 10−4. We use a target sample batch
size of 218, and distill 𝑂 as detailed in Müller et al. [2022]. The distortion loss Ldist is scaled by
𝜆dist = 10−2, and gradient scaling is performed linearly up to a distance of 1 to the camera.

C MODEL COMPONENTS ABLATION
We perform an in-detail ablation for different model components and latent code sizes 𝑁𝑙 for Ours
and iNGP Ours in Tab. 4. Evidently, inducing spatial linearity during training decreases quality
slightly, as this prevents the model from producing locally non-linear l and 𝜎 . Adding the frequency
encoded sample position as input to Θhead helps to mitigate the spatial information loss caused by
interpolation and the smaller latent codes. Decreasing 𝑁𝑙 leads to lower overall image metrics for
both models, however, Ours is able to retain more quality. The distortion loss Ldist encourages the
model to form proper surfaces, leading to better quality and fewer samples per ray.

D VIEW-CONSISTENCY OF CONE ENCODING
Our proposed view-dependent cone encoding needs to be trained for a maximum cone angle 𝜃max,
up to which the latent code l can be re-evaluated. The default cone angle for Ours is 𝜃max=25◦. We
evaluate view-consistency for different view-changes and 𝜃max through the following process: for
all test views, we generate four view-directions v𝑐 , uniformly placed on a circle of radius 𝜃 on the
unit sphere around the actual view-directions v𝑡 , such that v𝑇𝑐 v𝑡 = cos(𝜃). We then evaluate l from
v𝑡 via Θneck, re-evaluate it through Θhead for all four v𝑐 , and average the resulting image metrics.
The quantitative results can be seen in Tab. 5, with an example visualization in Fig. 8.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

Frustum Volume Caching for Accelerated NeRF Rendering 19

Table 4. Ablation of different model configurations for Ours and iNGP Ours.

Dataset Mip-NeRF 360 Indoor Mip-NeRF 360 Outdoor

Method PSNR↑ SSIM↑ LPIPS↓ FLIP↓ PSNR↑ SSIM↑ LPIPS↓ FLIP↓

iNGP Ours 30.32 0.889 0.219 0.101 24.18 0.653 0.317 0.174
iNGP Ours w/o linearity 30.58 0.893 0.215 0.099 24.29 0.658 0.314 0.172
iNGP Ours w/o linearity w/o Ldist 29.99 0.886 0.231 0.103 23.98 0.629 0.348 0.179
iNGP Ours w/ freq. enc. 30.47 0.890 0.218 0.100 24.25 0.657 0.313 0.172
iNGP Ours 𝑁𝑙 = 8 30.10 0.885 0.223 0.104 24.03 0.646 0.326 0.178
iNGP Ours 𝑁𝑙 = 4 29.45 0.872 0.238 0.112 23.75 0.631 0.342 0.186

Ours 30.14 0.891 0.220 0.104 24.23 0.659 0.312 0.173
Ours w/o linearity 30.29 0.891 0.222 0.102 24.28 0.660 0.311 0.172
Ours w/o freq. enc. 30.04 0.889 0.219 0.106 24.18 0.655 0.317 0.175
Ours 𝑁𝑙 = 16 30.27 0.891 0.218 0.103 24.18 0.656 0.316 0.175
Ours 𝑁𝑙 = 4 30.06 0.889 0.223 0.107 24.19 0.656 0.315 0.175
Ours 5◦ 30.38 0.891 0.218 0.101 24.25 0.659 0.311 0.173
Ours 45◦ 30.04 0.889 0.222 0.106 24.18 0.654 0.316 0.174

30.92 30.89 30.5430.92

31.16 29.33 23.2931.19

31.15 25.62 13.0031.18

O
ur

s
O

ur
s

O
ur

s

Fig. 8. View-consistency evaluation for our proposed model and cone encoding with different training degrees
𝜃max (Ours 5◦−25◦) and actual view-direction changes 𝜃 for the Room scene of the Mip-NeRF 360 dataset.

As expected, a smaller 𝜃max leads to a higher baseline quality, as Θneck can produce a more exact
view-dependent encoding, and l needs to be less informative. However, re-evaluating l for larger
view-direction changes fails catastrophically, as the model has not seen such large view-changes
during training. Ultimately, there is a trade-off between quality and adaptability to view-changes,
which can be chosen to accommodate the application’s usecase.

E GENERATING OFFSET VIEW-DIRECTIONS
In order to evaluate our cache rendering after rotational view-changes, we aim to generate rotated
views orot with view-direction vrot for each test view at position o with view-direction v. Therefore,
we require some reference point pref along v to act as our rotation anchor. As Mip-NeRF 360 views
are all inward facing towards the scene origin, we choose pref as the closest point to the scene
origin along v, determined via the projection of −o onto v. We then use the scene’s up-vector and

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

20 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

Table 5. View-consistency evaluation of our poposed model and cone encoding for different training degrees
𝜃max on the Mip-NeRF 360 dataset.

Dataset Mip-NeRF 360 Indoor Mip-NeRF 360 Outdoor

Method PSNR PSNR 5◦ PSNR 10◦ PSNR 25◦ PSNR PSNR 5◦ PSNR 10◦ PSNR 25◦

Ours 5◦ 30.38 30.10 29.08 21.52 24.29 24.24 23.99 20.07
Ours 10◦ 30.29 30.23 30.01 26.99 24.26 24.25 24.20 22.72
Ours 30.14 30.14 30.12 29.94 24.23 24.23 24.22 24.17
Ours 45◦ 30.13 30.13 30.12 30.04 24.19 24.19 24.19 24.16

Table 6. Detailed timings for the individual stages of the cache rendering pipeline, for rotational and minimal
translational view-changes. "Sample" refers to raymarching and sample placement with occupancy grid
checks. "Misc" contains the color accumulation and compaction stages. Times in ms for FullHD resolution for
Ours. Note: Summed up stage timings can differ slightly from total timings in other tables.

Detailed Per-Stage Timing (ms)

Type CHR Sample Inference
New

Cache
Lookup

Inference
Cache Misc Sum

𝑡 = −Δ𝑡min
2 97% 5.85 1.34 8.48 3.46 5.54 24.67 (1.94×)

𝜃 = 5◦ 83% 5.77 5.63 7.36 2.96 5.63 27.36 (1.75×)
𝜃 = 10◦ 72% 5.77 9.13 6.41 2.57 5.73 29.61 (1.62×)
𝜃 = 15◦ 63% 5.78 12.18 5.61 2.26 5.77 31.61 (1.51×)

w/o cache - 5.13 37.02 - - 5.73 47.88 (1.00×)

the vector pref − o as rotation axes for our rotation angles (𝜃, 𝜙) to receive the rotated view position
orot and view-direction vrot =

pref−orot
∥pref−orot ∥ .

F DETAILED PER-STAGE TIMINGS
We report detailed timings for the individual stages of the rendering pipeline in Tab. 6. In the case
of slight translation, where the CHR is close to 100%, Ours achieves speedups of almost 2×. Notably,
already for rotational movements of 𝜃 = 10◦ (CHR =∼72%), the inference of new samples (cache-
misses) exceeds the combined cost of cache lookup and inference. Unfortunately, the rendering
pipeline also spends a considerable amount of time with stages whose performance is independent
of caching ("Misc" and "Sample"), thereby limiting the speedup potential of a caching approach. If
we only consider the inference and cache lookup stages, we actually achieve speedups of 2.7×.

G PERFORMANCE ABLATION: BRICK SIZES
We evaluate the performance of our caching approach for Ours with different brick sizes 𝑁𝐵 , and
show their impact on cache size and cache initialization times. In theory, padding should allow for
faster memory access, since it eliminates the need for interpolation across brick borders. We see this
effect for larger brick sizes, however, this does not manifest for small bricks. One possible reason is
the larger memory overhead, as padded bricks with 𝑁𝐵 = 6 already use 57% of their values to store
neighboring information, leading to larger cache sizes and cache initialization times. In general,
larger bricks allow for less sparsity in the datastructure, therefore also increasing cache size. Note:
we use a custom interpolation kernel for the no-padding case, where we launch eight threads per

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

Frustum Volume Caching for Accelerated NeRF Rendering 21

Table 7. Ablation of performance and cache sizes/initialization times for different brick size 𝑁𝐵 and padding
configurations. Times in ms for FullHD resolution on Ours.

5◦ 10◦ 15◦ Avg. Cache
Size (GiB)

Cache Init.
Time

𝑁𝐵 Pad? Time CHR Time CHR Time CHR

6 yes 28.38 82% 30.64 71% 32.63 62% 3.41 161.30
8 no 28.08 84% 30.32 74% 32.40 65% 1.64 74.63
14 yes 26.96 86% 29.16 75% 31.30 66% 3.57 133.36
16 no 27.79 87% 29.92 76% 31.97 68% 2.54 92.31

0 50 100 150 200 250 300
Frame

0

5

10

15

20

25

Ti
m

e
(s

)

18.65s

10.25s (1.82×)

Per-Frame Timings: Ours (huge), Stump

w/o cache
Avg. w/o cache
w/ cache
Avg. w/ cache

0 50 100 150 200 250 300
Frame

0

5

10

15

20

25
Ti

m
e

(s
)

12.57s

6.78s (1.86×)

Per-Frame Timings: Ours (huge), Bonsai
w/o cache
Avg. w/o cache
w/ cache
Avg. w/ cache

Fig. 9. Per-frame render timings (including cache initialization) for high-quality video sequences, rendering
the Stump and Bonsai scene with 256 samples per ray in FullHD on Ours (huge).

sample and perform trilinear interpolation via shuffle operations. A naïve implementation might
show a different runtime behavior.

H VIDEO SEQUENCE RENDERING
To showcase the capabilities of our caching approach for accelerating offline-rendering of high-
quality videos, we render a 300 frame video sequence for the Stump and Bonsai scenes in FullHD,
using 256× supersampled motion blur and depth of field. We use Ours (huge) for both video
sequences, reporting average rendering time and per-frame timings in Fig. 9. Note that cache
initialization is already accounted for in the render times.

For caching, we use 𝑁𝐵 = 16 without padding and initialize the cache with twice the resolution
along the view ray to prevent any undersampling. Note that this leads to larger cache sizes and
longer cache initialization times, as well as slightly slower rendering from the cache. The cache is re-
initialized around 50 times in both video sequences, taking around 200ms per initialization. Evidently,
this overhead is quickly amortized through the increased rendering performance, especially since
this cache is then sampled 256× per frame and reused across multiple frames. The small spikes in
the plot signalize how render times increase as the CHR decreases, dropping back down as soon as
the cache is re-initialized. Independent of caching, the performance is heavily influenced by the
overall number of samples per ray, which is dependent on the currently rendered scene content.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

22 Michael Steiner, Thomas Köhler, Lukas Radl, and Markus Steinberger

Stump
Rotation:

Bicycle
Rotation:

Garden
Translation:

Counter
Translation:

C
ac

he
 In

it
Vi

ew
C

ac
he

 C
on

tri
b.

 M
as

k
C

ac
he

 R
en

de
r

Ba
se

 R
en

de
r

G
ro

un
d-

Tr
ut

h
(G

T)

27.13

22.47 25.64 20.8927.09

22.52 25.33 20.80

Fig. 10. Example images from our caching evaluation for different scenes of the Mip-NeRF 360 dataset,
rendered Ours. We shift the cache initialization view away from our test set views via rotation or translation,
and render this cache from the test set view. We also visualize the contribution of cache-hit samples vs.
cache-miss samples. For comparison, we also show the base render (without caching) and the ground-truth
images, as well as PSNR image metrics between base/cache renderings and ground-truth images.

I RENDERING FROM CACHE: QUALITATIVE IMAGE COMPARISON
We show additional examples from our qualitative cache rendering evaluation in Fig. 10. Our cache
rendering approach is able to seamlessly blend the contributing samples from cache with the new
samples. We also report PSNR for our cache renderings and the baseline images, compared to
the ground-truth test set images. Notably, the cache rendered images exceed the baseline images
in PSNR on several occasions. This is generally the case if the cache is initialized closer to the
scene content, i.e. translation "+", as this effectively increases the cache’s resolution when sampled
from further back. The drawback is that it produces more cache-misses. The opposite effect can be
observed when initializing the cache from further away, i.e. translation "-".

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Neural Radiance Fields
	2.2 Baking NeRFs
	2.3 Temporal Coherence Methods

	3 Preliminaries
	3.1 NeRF Volume Rendering
	3.2 NeRF Network Architecture

	4 Interpolating NeRF Samples
	4.1 Interpolation
	4.2 Learning Spatial Linearity
	4.3 View-dependent Cone Encoding
	4.4 A Model for Efficient Rendering From Cache

	5 NeRF Frustum Volume Caching & Reprojection
	5.1 Caching Datastructure
	5.2 Cache Initialization
	5.3 Reprojection & Sampling
	5.4 Implementation Details

	6 Results
	6.1 Model Evaluation
	6.2 Caching & Reprojection

	7 Limitations & Future Work
	8 Conclusion
	References
	A Clamped Exponential Step Size
	B Additional Implementation Details
	C Model Components Ablation
	D View-consistency of Cone Encoding
	E Generating Offset View-directions
	F Detailed Per-Stage Timings
	G Performance Ablation: Brick Sizes
	H Video Sequence Rendering
	I Rendering from Cache: Qualitative Image Comparison

